EXTRACT FROM
https://cft.vanderbilt.edu/guides-sub-pages/active-learning/
ACTIVE LEARNING
WHAT IS IT?
In their seminal work Active Learning: Creating Excitement in the Classroom, compiled in 1991 for the Association for the Study of Higher Education and the ERIC Clearinghouse on Higher Education, Bonwell and Eison defined strategies that promote active learning as “instructional activities involving students in doing things and thinking about what they are doing” (Bonwell and Eison, 1991). Approaches that promote active learning focus more on developing students’ skills than on transmitting information and require that students do something—read, discuss, write—that requires higher-order thinking. They also tend to place some emphasis on students’ explorations of their own attitudes and values.
This definition is broad, and Bonwell and Eison explicitly recognize that a range of activities can fall within it. They suggest a spectrum of activities to promote active learning, ranging from very simple (e.g., pausing lecture to allow students to clarify and organize their ideas by discussing with neighbors) to more complex (e.g., using case studies as a focal point for decision-making). In their book Scientific Teaching,
Handelsman, Miller and Pfund also note that the line between active learning and formative assessment is blurry and hard to define; after all, teaching that promotes students’ active learning asks students to do or produce something, which then can serve to help assess understanding (2007).
The National Survey of Student Engagement (NSSE) and the Australasian Survey of Student Engagement (AUSSE) provides a very simple definition: active learning involves “students’ efforts to actively construct their knowledge.” This definition is supplemented by the items that the AUSSE uses to measure active learning: working with other students on projects during class; making a presentation; asking questions or contributing to discussions; participating in a community-based project as part of a course; working with other students outside of class on assignments; discussing ideas from a course with others outside of class; tutoring peers (reported in Carr et al., 2015).
Freeman and colleagues collected written definitions of active learning from >300 people attending seminars on active learning, arriving at a consensus definition that emphasizes students’ use of higher order thinking to complete activities or participate in discussion in class (Freeman et al., 2014). Their definition also notes the frequent link between active learning and working in groups.
Thus active learning is commonly defined as activities that students do to construct knowledge and understanding.The activities vary but require students to do higher order thinking. Although not always explicitly noted, metacognition—students’ thinking about their own
learning—is an important element, providing the link between activity and learning.
WHY IS IT IMPORTANT?
In addition to the evidence that active learning approaches promote learning for all students, there is some evidence that active learning approaches are an effective tool in making classrooms more inclusive. Haak and colleagues examined the effects of active learning for students in the University of Washington’s Educational Opportunity Program (EOP) who were enrolled in an introductory biology course (Haak et al., 2011). Students in the EOP are educationally or economically disadvantaged, are typically the first in their families to attend college, and include most underrepresented minority students at the University of Washington. Previous work had demonstrated that the researchers could predict student grades in the introductory biology course based on their college GPA and SAT verbal score; students in the EOP had a mean failure rate of ~22% compared to a mean failure rate of ~10% for students not in the EOP. When multiple highly structured approaches to promote active learning were incorporated into the introductory biology course, all students in the course benefited, but students in the EOP demonstrated a disproportionate benefit, reducing the achievement gap to almost half of the starting level. Given the pressing need to make U.S. college classrooms more inviting and productive spaces for students from all backgrounds, these results provide another compelling reason to incorporate active learning approaches into course design.
Lorenzo, Crouch, and Mazur also investigated the impact of active learning approaches on the difference in male and female performance in
introductory physics classes (2006). They found that inclusion of active engagement techniques benefited all students, but had the greatest impact on female students’ performance. In fact, when they included a “high dose” of active learning approaches, the gender gap was eliminated. This result supports earlier work suggesting that women particularly benefit from active learning approaches (Laws et al., 1999; Schneider, 2001).
TESTING HOW TO EMBED A VIDEO
I'm going to add the embed code of a Youtube Video
Logging in, please wait...
0 archived comments